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Project Background 

• NTR to Mars 

• Enabling technology for human exploration of Mars 

• The mass of the propellant for the entire NTR 
mission must be carried on-board 

• Incremental payload increase = significant 
structural and propellant mass increases 

• Creating and sustaining an outpost on Mars will 
require frequent cargo launches 



Project Background 

• Design an electromagnetic lunar launcher as an 
alternative method to perform interplanetary transfer 

– Requiring electricity for launch instead of propellant 

 

• Launch cargo to Mars 

– Minimal on-board propellant and structural 
requirements 

– Incremental increase in payload = incremental 
increase in power requirements 

– Ability to increase frequency of launch to meet 
mission requirements 

– Flexible for other interplanetary launches in the future 



Interplanetary Lunar Launcher 



NTR Comparison 

• Payload: 100 tons 
 

• Fuel: 198 tons 

– Liquid Hydrogen fuel 

–Must carry all fuel to get 
from LEO to Mars orbit 

 

• TOF to Mars: 100-140 days 

• IMLEO = 394-429 metric 
tons 

• ΔV = 8.4-9.1 km/s 

 



Electromagnetic Lunar Launcher Project 
Specifics 
• Payload: 100 tons 

–Dimensions:  

• Diameter=8.5 m  

• Length=26 m 

–Assumed 100 tons of liquid hydrogen 

– Launched from Earth to LEO with NTR and NTR 
used to get to LLO 

• Lunar Restricted Forces: 15 G’s 

–Maximum ΔV=5 km/s 

• Track Length: 88 km 

 

 



Project Specific - contd 

• Timeline is 50 years out 

• Lunar base exists 

• Consistent need for cargo 
launches to Mars 

• Commercialization of Earth-
based launches 

1 

• Orbital Mechanics Assumptions 

– NTR ISP of 850 s 

– NTR has 214 N of thrust 

– Impulsive burns for entrance into Martian orbit 

– Once a day launch 



Launcher Infrastructure 

• Surface Power 

–High Temperature Gas Reactor - ~30 MWe 

–System mass - ~150 metric tons  

 

• Energy Storage 

–Aluminum electrolytic capacitors 

 

• Location 

– Far side of the moon 



Design Options 

• Option 1: Maglev 

• Option 2: In-Situ Maglev 

• Option 3: Linear Synchronous Motors 

• Option 4: Conducting Glass Road 

• Option 5: Coil Launcher 



Option1: Maglev 



Levitation System 

Electromagnetic 
Suspension (EMS) 

• Electromagnets located on 
the sled 

 

• Coils line the track 

 

• Interaction results in 
constant levitation 

– Airgap between 1-10 cm 

Electrodynamic 
Suspension (EDS) 

• Superconducting magnets 
on the sled 

 

• Electromagnetic coils line 
the track 

 

• Must have wheels to move 
sled until lift-off speed is 
reached 



Option 1: Maglev 

• Design based on current technology 

–German Transrapid 

–South Korean UMP 

– Japanese MLX 

 

• Everything made on Earth and sent to LLO 

– Track: aluminum 

–Sled: aluminum 

–Structure: carbon steel 



Option 2: In-Situ Maglev 



Option 2: In-Situ Maglev 

• Certain components or materials still on Earth 

–Superconducting magnets 

–Reactors 

 

• The rest made from lunar materials 

–Sled: aluminum 

–Track: iron 

–Structure: sulfur concrete  

 



Option 3: Linear Synchronous Motors   

Lines: electric potential 

Color: magnetic flux density (blue to pink, low to high) 



How LSM Work 

• Contains a magnetic source within the motor 
 

• Thrust force is produced  by interaction between the 
armature current and magnetic field 

Pull Force Push Force 



Option 4: Conducting Glass Road 

• Conductive glass roadway 

–Add in-situ aluminum to make the road conductive 

–Sinter roadway to make regolith into glass 

 

• Superconducting magnets, receiver, radiators, and 
cargo on sled 

 

• Power beaming to power sled 

–Entire amount of power must be beamed 
simultaneously 

– Laser must have line of sight to entire track 



Sintering 

• Create a glass roadway 
using microwaves 

– Glass is stronger if the 
process is performed 
anhydrously 

 

• Use for the base/structure 

Power Beaming  

• Need to beam ~268 GW 
power to the sled 

– 10.72 million lasers 

• 50yr out technology 

 

– Theoretical Maximum 
Efficiency: 50% 

• for light conversion 

– Large efficiency drop-off 
due to laser diffraction 

• 80% in 12 km 

 

– Emitter Radius: 21 m 
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Option 5: Coil Launcher 



Option 5: Coil Launcher 

• Characteristics: 
– Electromagnetic coils 

– In-situ materials 

– Simplified track design 

– Modular and flexible design 

– Reusable launching sled 

 

• Design specifics: 
– Shipped mass – 620 tons 

– Coil diameter – 12.0 m 

– Coil spacing – 2.2 m 



Design Options Recap 

Option 
Structure 

Design 

In-Situ 

Resources 

Key Advantages and 

Disadvantages 

Maglev 1 Track  
Proven Earth 

Technology 

Everything 

Shipped 

Maglev 2 Track  
Proven Earth 

Technology 
Reduced Mass 

LSM 
Planar 

(minimal track)  
Reduced 

Structure 

Complexity of 

Control 

Conductive 

Glass Road 
Planar Road  

Minimal 

Structure 

Far Future 

Technology 

Coil 

Launcher 
Circular Coils  

Positions Cargo 

in Center 

Complexity of 

Control 



Mass and Launch Comparison 

Option 
Shipped 

Mass (tons) 

Total Propellant 

Mass (tons) 

Number of Equivalent 

NTR Missions 

Maglev 1 44,797 219,751 1,112 

Maglev 2 961 4,945 25 

LSM 710 3,715 19 

Conductive 

Glass Road --- --- --- 

Coil 

Launcher 620 3,276 17 



Cost Comparison 

Option 
Launch Cost 

($ Billions) 

Extraction 

Shipping Cost 

($ Billion) 

Total Shipping 

& Launch Cost 

($ Billion) 

Maglev 1 $ 261.32 --- $ 261.32 

Maglev 2 $ 5.77 $ 63.61 $ 69.38 

LSM $ 4.26 $ 63.61 $ 67.87 

Conductive 

Glass Road 
--- --- --- 

Coil Launcher $ 3.72 $ 63.61 $ 67.33 



Conclusions 

• Advantages: 

– Variable ΔV 

• Additional launch missions 

– Launcher is more sustainable 

• After initial 17 payoff missions to Mars, uses less 
propellant per mission thereafter 

– Modular 

• Can add track/coils for longer/farther interplanetary 
missions in the future 

• If a small portion fails, it does not result in 
catastrophic failure of the whole system 



Conclusions 

• Challenges: 

– Significant upfront launch costs 

 

– Availability of lunar infrastructure 

 

– Significant investment in effort and time 
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Questions? 

Interplanetary Lunar Launcher 
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